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A mathematical model is proposed to describe the behavior of a doping impurity concentration in a crystal 

grown by the Stepanov method from a melt and subjected to periodic changes in its pulling rate and 

temperature of  the thermal node. Various modes of these effects are discussed. The results obtained are 

given by graphs that characterize their influence on concentration distribution. 

Introduction. Crystals of lithium niobate with a periodic domain structure are capable of direct frequency 

doubling of laser light. Such crystals are suitable for designing compact light sources. By microinhomogeneities is 
meant the situation when crystal properties change within the limits of less than a millimeter. 

Several methods exist for obtaining periodic ferroelectric domain structures of the crystals of lithium niobate 

during their growth [1-4 ]. All of them are based on periodic changes in the growth parameters that lead to periodic 

changes in the doping impurity. In its turn, the domain structure obtained is determined by the concentration 
gradient of the impurity. It seems that the most attractive method for obtaining periodic structures in LiNbO3 is 
the Stepanov method. First, it is rather simple to obtain a desired shape of volumetric ferroelectric domains since 

they are a replica of the working surface of the shaper. Second, a domain structure is obtained by modulation of 
such parameters of crystal growth as the growth rate of the crystal, the pressure in the melt meniscus, the 
temperature of the thermal node, etc. These parameters allow computer-aided control with a high accuracy. 

The present work is aimed at the development of a mathematical model of the behavior of an impurity 

stipulated by periodic changes in the conditions of crystal growth by the Stepanov method. As a rule, it represents 

concentration fluctuations of the doping impurity which are caused, in turn, by fluctuations of a pulling rate V and 

the temperature of the thermal node T. The latter total fluctuations determine the change in the growth rate Vc of 

a crystal. Actually, an expression for Vc may be written as Vc = V - h(t), where h(t) is the position of the crystal- 
lization front at time t. The behavior of the phase boundary h(t) reflects the behavior of both V and T. Considering 

the temperature effect on h(t), we must distinguish two kinds of influence, namely, a direct influence by changing 
the oscillator power (the temperature of the thermal node) and an influence due to unsteady-state gravitational 
convection. We shall consider only the former influence, bearing in mind that the crystals are grown by the Stepanov 

method, in which gravitational convection may be made insignificant most successfully or suppressed entirely by 
a proper choice of the growth parameters and thermal zone. Two approaches to solution of this problem exist: 1) 

use of the notion of the effective coefficient of impurity segregation and the boundary-layer model [5 ] and 2) direct 

numerical solution of the basic equations [6 ] (disregarding the change in the length of a growing crystal). The first 

method results, by reducing to dimensionless form, in a singularly perturbed equation, i.e., one with a perturbation 

parameter at a higher derivative, which may be solved by the known method. Strictly speaking, knowing the 

concentration distribution at a sufficiently large distance from the crystallization front, one may determine the 

concentration in the crystal near the crystallization front by performing multiplication by this coefficient. However, 
this way fails to find an analytical solution in the general case when changes in the length of the growing crystal 
and in the phase boundary position are taken into account. 
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Fig. 1. Schematic of crystal growth: 1, crystal; 2, meniscus; 3, shaper; 4, melt; 

5, crucible. 

To describe mathematically this problem, we have solved numerically the one-dimensional nonstationary 

Stefan problem, the diffusional equation for concentration, and the capillary Laplace equation. So far, the 

mathematical model suggested allows the most complete and exact description of the behavior of an impurity 

concentration in a growing crystal. The equations of this model given below have been solved numerically by the 

semidiscrete Galerkin method. 

Statement of the Problem. We shall consider the process of crystal growth from a melt by the Stepanov 

method. The crystal represents a thin cylinder with radius R0, and the radius of the capillary channel is b (see 

Fig. 1). Up to some moment the crystal growth corresponded to stationary growth of the crystal, having, by this 

time, length /0, and the position of the crystallization front ho. Then the melt-crystal system was subjected to 

perturbations that represented periodic fluctuations of the pulling rate and temperature. These fluctuations lead to 

deviation of the current radius R ( t )  of the crystal from R 0 and of the position of the phase boundary h( t )  relative 

to h0. We shall assume that the R ( t )  fluctuations do not cause substantial changes in the temperature field in the 

crystal and, moreover, the melt lying directly under the profile curve of the meniscus also exerted a slight influence 

on this temperature field. These assumptions allow us to reduce the formulated problem to solving the following 

system of differential equations for the temperatures in liquid and solid phases T l and T s and the phase boundary 

h(t): 

OT l O2Tl OT 1 OT l 
- -  a l - - - f  - -  Y l l - -  - -  Y21 TI  + Y31 z - -  + Y21  O1, 

Ot Oz Oz Oz 
O< z < H ( t ) ,  

OT s 02Ts OT s OT s 
- as - -  - Yls - -  - Y2s Ts + Y3s z - -  + Y2s 02 ,  

Ot Oz 2 Oz Oz 
H ( t )  < z <  1, 

h (t)  = H ( t ) . l  (t) . (1) 

In these equations temperatures T i and all temperatures discussed below pertain to the melt temperature 

TO at the shaper outlet at the initial moment of time. Furthermore, we have passed to the dimensionless coordinate 

z'  = z / l ( t ) ,  where l ( t)  is the current length of the calculated zone: 

t 
l ( t ) = h o + l o +  f V ( ~ ) d T .  

0 

For convenience, instead of z' the variable z is again used. The temperatures of outer media are expressed in terms 

of O i ( z )  (i = l, s); they may be prescribed by a single formula. The coefficients al, as, 71i, Y2i, 73i (i = l ,s)  in Eqs. 

(1) are of the form 
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2 
k i V V Pl Ro 

= 12cpjp j ,  = - - ,  711- b2, 72j= Ro. ay 71s l l Ps cpypy 

Over the crystallization front z = H(t) the condition of interphase energy balance 

OTl OTs PsAHfl ] , h = il l  + VH, (2) 

where AHf is the latent heat of melting, and the continuity condition of the temperature with its equality to the 

melting !emperature T m 

T s(H(t))  = T l(H(t))  = Tm. (3) 

must be fulfilled. Moreover, the initial temperature distribution and the initial H(t) are prescribed: 

'7 0 T l (0 ,  z) = (z), 0 <- z < H ( t ) ,  T s(O, z) = T s (z), H(t)  <z<- 1, H(O) = H  O. (4) 

Finally, the boundary conditions 

T l ( t ,  O ) = T  l( t ) ,  T s ( t ,  1 ) = T  c(t) ,  (5) 

are set which determine the regime of temperature fluctuation. 

Solution of problem (1)-(5) allows us to determine the behavior of the phase boundary  H(t) and, 

consequently, the behavior of the crystal radius R(t). Actually, R(t) may be described by a system of differential 

equations 

k (t) = (V - tz ) tan (e - %) ,  (6) 

where e is the angle between the tangent to the profile curve of the meniscus ~(r) and to the straight line r = R(t) 
at the triple junction point while e o is the angle of growth, which is a known value typical for a chosen material. 

The angle e is determined from the equality 

- c t a n e = ~ r  [r=R(t ) '  
(7) 

where ~(r) is a function that describes the equilibrium shape of the liquid meniscus subjected to the forces of gravity 

and surface tension. It satisfies the capillary Laplace equation 

Plg (~ + H*) = a (1 + ~'2) 3 / z  r (1 + ~'2) 1/z  

and the boundary conditions 

(8) 

(n (t)) = h (t) ,  ~ (d) = o .  (9) 

In the last formula, we have introduced the following designations: a is the coefficient of surface tension; g is the 
gravitational acceleration; H* is the difference of melt heights in the crucible and on the upper edge of the shaper; 

d is the distance from the z-axis to the point of meniscus engagement with the shaper edge. Note that at H* = 0 

one may use a formula that is easily obtained from the expression relating the crystal radius R, the meniscus height 
H, and the angle e [7 ], which is well known for the Czochralski method, by its conversion provided that d is 

sufficiently large (d ~ 3R0): 
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z~ 2a - h ~ lg 2 

e = - - - + a r c s i n  4 ( h ~ 2 2  cr + 4 )  + a r c s i n 4  h2~-g+4)" 

The distribution of the impurity concentration C s in a growing crystal may be found by solving the 

differential equation describing the behavior of the impurity concentration in the melt Cl and introducing the 
segregation coefficient ko = Cs/Cl: 

OC l D 02Cl V OC l h OC l 

Ot =--~ - -  + - - z - - ,  l c Oz 2 l c Oz l c Oz 

(10) 

where lc = l * + h(t). 

The initial concentration distribution Co in the melt is considered to be uniform, but due to fluctuations of 
the crystal pulling velocity and temperature it will change with time thus influencing, naturally, the impurity 
distribution in the crystal. It is also assumed that at a sufficiently large distance l * from the upper edge of the 

shaper down the capillary channel, the concentration Cl is constant and equal to Co. Thus, the initial and boundary 
conditions may be formulated as 

Cl[t= o = CO, (11) 

D OC l ( V -  h )  (k o - 1) C l z = l  Cl z=O CO" (12) 
l c Oz - -  ' = 

On writing Eq. (10) and conditions (11) and (12), we also passed to the dimensionless variable z' -- z / l  c and then 

again used its former notation. 
The set of the equations, boundary and initial conditions (1)-(12) describes completely the formulated 

problem in its one-dimensional approximation. 
2. Method of Finite Elements and Numerical Results. The semidiscrete Galerkin method is based on passing 

to a differential equation in its weak form. At inhomogeneous boundary conditions the Galerkin approximation 

TI, T s of the temperatures T l, Ts, on solving the Stefan problem (1)-(5), may be represented as 

N M 
TI = W l ( Z ,  t) + ~ a i(t)~o i (z) ,  Ts=  W s ( z ,  t) + ~ a i ( t )  T i ( z ) ,  (13) 

1 N+I 

where the functions Wl, Ws satisfy boundary conditions (3) and (5). They may be prescribed, for instance, in the 

form 

T m -  T O(t) T c ( t ) -  T m T m - H T  c( t )  
W l =  To ( t) + H z ,  W s -  1 -  H z +  1 -  H 

while the functions Ti form a basis of the the subspaces of energetic spaces (Sobolev spaces, functions that vanish 
at the boundary): Ti ~ I~l)[0,H(t)],  l~l)[H(t) ,  1]. 

Then the Galerkin approximation is determined from a system of ordinary differential equations for the 

functions ai(t  ) that are the finite-element analog of the equations (1) (i -- 1, ..., M) and H(t): 

A ] ~ ] ( t )  = - -  (Bj- . I -Yl]~j  + r 2 ] A j )  a]( t )  + ~] ( j =  l ,  S ) ,  

i4  (t) = v o (0  + - q -a7 j ==u(t) 
(14) 
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ks kl  (15) 
qS - A H y P s  l , ql - A H y P l  l " 

In system of Eq. (14) and (15) we have introduced the following designations: matrices Aj, By, C/, Dj (] = l, s) of 

the form 

A j  = (~oi, ~Ok) , B i = (079i, O~Ok) , C i = (~oi, O~Ok) , O i = (z~oi, O~Ok) , 

i, k = 1 . . . . .  N for the subscript ] = l; i, k = N + 1 . . . .  , M for the subscript j = s. The  vectors Qj correspond to the 

temperatures Oj from Eq. (1) as well as to condition (3) and boundary conditions (5). They  are represented by 

the formulas 

oj= arFj, 

in which the Fj components are the values of the Fj functions and their derivatives at the nodes of the partition 

network: 

while the Lj operators have the form 

owj 
Fj = - ot + L j W j  + 

0 2 0 0 

Lj  aj Oz 2 Oz = - - -TU-~z-~2J + 7 3 j z - ,  f =  l ,  s .  

The basis elements ~o i represent the Hermite cubic functions obtained by displacing the functions 

~(z )  = (Izl - 1 ) 2 ( 2  Izl + 1), ~o(z) = z ( I z l  - 1) 2 .  

to the corresponding node of the partition network. 

Thus,  each node of partition of the regions [0, H ( t ) ] ,  [H( t ) ,  1 ], corresponding to liquid and solid-state zones, 

contains two basic functions % o~, with the exception of the boundary nodes at which only the function co is 

contained. 

Initial conditions for the system (14) and (15) may be preset as 

a i ( 0 ) = 0 ,  H ( 0 ) = H  0,  i =  1 . . . . .  M ,  (16) 

if the initial temperature distributions T~] (z) from (4) are considered to be linear. Actually, t hey  are insignificant 

for times at a sufficient distance from the initial one. 

For numerical solution of the capillary Laplace Eq. (8) we may use the results of [8, 9], in which an 

equilibrium shape of the liquid menisci engaged with an arbi t rary contour has been found and their  stability has 

been investigated, therefore we do not give here the equations that describe this situation. 

If we designate C = C' + C O and represent C' as a sum 

K 

c' (z) = ~, ~i (0 ~i (~), 
i= l  

then the finite-element analog of Eq. (10) for the concentration C' may be written as 

D V "c Dc  
A c f l  = - ~ Bc _ - - C  c +  fl  + vfl c + v C  0, 

lc l c lc 

(17) 
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Fig. 2. Impurity concentration distribution with respect to the crystal length 
at harmonic fluctuations of the pulling rate and the temperature of the thermal 
node: a, distribution coefficient k 0 < 1; b, distribution coefficient k 0 > 1. l, 
cm.  

where 

1 
V = - T ( V -  h ) (k o -  1); 

'c 

tic = ( i l l ,  0 . . . . .  0 ) ;  C 0 = ( C o ,  0 . . . . .  0 ) .  

The matrices entering Eq. (17) have the same designations as in (15). And, finally, the initial conditions 
corresponding to them are as follows 

flg(O)=O, i = l  . . . . .  K. (18) 

The systems of Eq. (14), (15), and (17) with their boundary conditions have been solved by the Runge- 
Kutta method combined with the Gauss method, since these equations have not been solved for derivatives. 

We now pass to the numerical results obtained. We have considered two types of periodic changes in the 

pulling rate, namely, harmonic fluctuations and fluctuations representing a stepwise function. Simultaneously, the 
temperatures Tl(t),  Tc(t) and the ambient  temperature have also periodically changed. For this, harmonic 

oscillations of the the pulling rate V of the crystal are represented analytically as 

V =  V0(1 + A s i n ( ~ o t + ~ ) ) ,  A <  1, T c ( t ) = T c o + T c l s i n o J l t + A T ( l ( t  ) - l O ) ,  

T l (t) = T O + TO1 sin colt. 

In these formulas, the parameters have the following values: 

V 0 =  10 -3 cm/sec ,  
- 1  ar - 1  

A = 0 . 5 ,  ~ = 0 ,  ~ = ~ sec[  , o,,  = ~ sec]  , 

T o =  2075~ A T =  - 500~ T~ = 2000~ T c l =  10~ 

T01 = 30~ T m = 2050~ l o = 1. (19) 

The values of the physical parameters of the problem are given for lithium niobate. 
Figure 2 shows the relative concentration distribution of the impurity Cs/CO with respect to crystal length 

which is a result of numerical solution of problem (1)-(13) for growth conditions (19). In accordance with it, we 
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Fig. 3. Impurity concentration distribution with respect to the crystal length 

with sinusoidal (a) and stepwise (b) changes in the pulling rate and at a 

constant temperature of the thermal node. 

have determined the impurity concentration in the melt Cl(t, z) and then the impurity concentration in the crystal 

Cs from the relation 

C s (t) = koC l (t, z) [z=H(t) 

for distribution coefficients of k0 = 1.2 and 0.8. It is seen that the concentration Cs either decreases in an oscillating 

manner  (Fig. 2a) or increases (Fig. 2b) and next reaches a stationary oscillating regime that corresponds to its 

distribution coefficient. The  time needed to attain this regime and the oscillation amplitude depend on the diffusion 

coefficient D. For instance, with decreasing D from 10 -2 to 10 -3 cm2/sec the impurity concentration Cs increases 

against its mean value from 0.5 to 5 ~ .  Note that the depicted curves are their mirror representation. Furthermore,  

we have considered two cases of the most important periodic disturbances that occur at a constant temperature of 

the thermal zone: at harmonic fluctuations of the pulling rate of the crystal and at its stepwise disturbances (Fig. 

3): 

V = {  v~ O<-t<-t~ 

Vot , to <- t <- s ,  

V0 = 5 .10  -3 cm/sec ,  Vol = 5- 10 -4 cm/sec,  to = 8 sec, S = 16 sec, with the other  parameters of the growth regime 

(19) being equal. 

The  behavior of Cs/Co as a function of the other parameters does not change qualitatively and must be 

determined in each particular case. The results obtained serve as a basis for optimization of the efficiency of a 

waveguide manufactured from crystals with their domain structure obtained as described above. 

C O N C L U S I O N S  

1. The  mathematical model proposed qualitatively reflects the impurity distribution in a growing crystal 

(all our results obtained are well consistent with those of the authors of [5, 6 ] in all the cases when their parameters 

are close to ours) and so far it represents the most complete description of a crystallization process under  periodic 
disturbances. 

2. It should be noted that the relative concentration Cs/Co does not reach, on the average, the stationary 

level corresponding to an oscillation-free regime when it acquires a value equal to unity, i.e., its mean value is either 

higher (ko < 1) or lower (ko > I) than the concentration in the case of stationary crystal growth dependent  on the 

distribution coefficient. 
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N O T A T I O N  

v, pulling rate of the crystal; Vc, crystallization rate; Vl, velocity of melt motion; h(t), position of the 
crystallization front at the timet; H(t), dimensionless height of the crystallization front; /0, initial length of the 
crystal; R(t), crystal radius; kj q = l, s), thermal conductivities of the melt and the crystal; cpj (j -- l, s), specific 
heats of the melt and the crystal; pj q = l, s), densities of the melt and the crystal; AHf,  latent heat of melting; e 0, 
angle of growth; or, coefficient of surface tension; Tin, melting point; Tj q = l, s), temperatures of the melt and the 
crystal; T 0, temperature of the melt at the shaper outlet at the initial moment of time; l *, length of the capillary 
channel; Ch impurity concentration in the melt, k0, coefficient of impurity distribution; b, radius of the capillary 

channel. 
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